New publication: Dust in the Galactic Environment (3rd edition)

Twenty years have passed since the 2nd edition of Dust in the Galactic Environment was completed in 2002, and it was certainly due for an update! The 3rd edition is available in pdf, epub, mobi and hardcopy formats (the first chapter is free to download).

Major advances have been made in the last two decades in our understanding of astrophysical dust, driven by discoveries arising from observational facilities such as the Spitzer, Planck, and Herschel Space Telescopes, as well as important parallel developments in laboratory studies of cosmic and terrestrial analog materials. The new edition reviews these developments, summarizes the current state of the field, and considers possibilities for future advances, for example with the James Webb Space Telescope. It includes introductory material for new entrants to the field alongside detailed discussion for more advanced students and researchers.

Interview for the Star Formation Newsletter

The monthly Star Formation Newsletter publishes monthly interviews by Bo Reipurth of scientists working in this an related fields. I was honored to be invited to participate in an interview, published in the May 2022 edition. In addition to career highlights and reflections, in includes plans for the new edition of my text Dust in the Galactic Environment, due for publication later this year.

New NASA grant establishes research community focused on pathways to life on Earth

The evolution of planet Earth and the emergence of life during its first half-billion years are inextricably linked, with a series of planet-wide transformations – formation of the ocean, evolution of the atmosphere, and the growth of crust and continents – underpinning the environmental stepping stones to life. But how, and in what order, were the ingredients for life on Earth manufactured and assembled?

NASA’s Astrobiology Program has awarded a $9 million grant to tackle the question through the Earth First Origins project, led by Rensselaer Polytechnic Institute Professor Karyn Rogers. The five-year project seeks to uncover the conditions on early Earth that gave rise to life by identifying, replicating, and exploring how prebiotic molecules and chemical pathways could have formed under realistic early Earth conditions. The grant establishes the Rensselaer Astrobiology Research and Education center (RARE). It continues a long tradition of leadership in this field at RPI, in succession to the New York Center Studies of the Origins of Life (1998-2006), led by James Ferris, and the New York Center for Astrobiology (2009-2016), led by Doug Whittet.

For further details, see

New publication: Origins of Life: A Cosmic Perspective

This new text is based on the undergraduate course taught by the author at RPI for many years. It provides insight into the environments and processes that gave birth to life on our planet, and assesses the probability that life has arisen (or will arise) elsewhere. An overview of relevant concepts, methods, and theories is presented, along with a summary of the latest findings.

The book is intended for mid- and upper-level undergraduates and beginning graduate students, and more generally as an introduction and overview for researchers and general readers seeking to follow current developments in this interdisciplinary field. Readers are assumed to have a basic grounding in the relevant sciences, but prior specialized knowledge is not required. Each chapter concludes with a list of questions and discussion topics as well as suggestions for further reading. Some questions can be answered with reference to material in the text, but others require further reading and some have no known answers. The intention is to encourage readers to go beyond basic concepts, to explore topics in greater depth, and, in a classroom setting, to engage in lively discussions with class members.

Link to book on Amazon
Link to book at Institute of Physics Publishing

Graduating Astrobiology student featured in ‘Inside Rensselaer’

Class of 2017 graduate Christina Akirtava is featured in the May 2017 issue of Inside Rensselaer. Majoring in Bioinformatics and Molecular Biology, with a minor in Astrobiology, Christina is an exemplar of the interdisciplinary science environment at Rensselaer. In her article entitled How to Succeed at Rensselaer, she notes that experiencing undergraduate research opened avenues she never thought possible, including a once in a life time opportunity to spend a semester working on a research project at the Technical University of Dortmund, Germany: “Taking a semester off to dive into pure research not only taught me endless biotechnical skills, but broadened my understanding of different cultures.”

Christina has been admitted to the Ph.D. program in computational biology at Carnegie Mellon, starting fall 2017.

Read the full article here.

Astronomy Graduate Student Emily Kosmaczewski Wins Fulbright Award

Emily Kosmaczewski, a graduate student in astronomy at Rensselaer Polytechnic Institute, has been awarded a Fulbright U.S. Student Program grant for the 2017-2018 academic year from the U.S. Department of State and the J. William Fulbright Foreign Scholarship Board. Kosmaczewski will spend her Fulbright tenure conducting research on radio galaxies at Jagiellonian University in Krakow, Poland. She is the eighth student from Rensselaer to win a Fulbright award, and the first to pursue research in physics and astronomy.

Read the full story here.

NASA’s Spitzer Space Telescope reveals largest batch of Earth-size, habitable-zone planets around a single star

In a news release today, NASA reports that its Spitzer Space Telescope has revealed the first known system of seven Earth-size planets around a single star. “This is the most exciting result I have seen in the 14 years of Spitzer operations”, said RPI graduate Sean Carey ’88, Ph.D.’95, manager of NASA’s Spitzer Science Center at Caltech/IPAC in Pasadena, California. “More observations of the system are sure to reveal more secrets.” Three of these planets are firmly located in the habitable zone, the area around the parent star where a rocky planet is most likely to have liquid water.

Read the full story here

The Ancient Atmosphere and Carbon and Nitrogen in the Earth’s Crust

Carbon and nitrogen are central to life on Earth – life cannot exist without them, but an overabundance in the atmosphere imperils the life we have. So how much carbon and nitrogen is there on (and in) planet Earth? And how much was in the ancient atmosphere? Actually, no one is really sure. The amount of carbon and nitrogen trapped in minerals in the Earth’s crust is one factor in the equation, and the subject of a three-year research project supported by a $900,000 grant to Rensselaer Polytechnic Institute from the U.S. Department of Energy. In their work, researchers will examine the ability of minerals to absorb and retain carbon and nitrogen. By doing so, they may also uncover a new source of information about the ancient atmosphere.

Read the full story here.

Extraterrestrial Impact may have preceded Ancient Global Warming Event

A comet strike may have triggered the Paleocene-Eocene Thermal Maximum (PETM), a rapid warming of the Earth caused by an accumulation of atmospheric carbon dioxide 56 million years ago, which offers analogs to global warming today. Sorting through samples of sediment from the time period, researchers at Rensselaer Polytechnic Institute discovered evidence of the strike in the form of microtektites – tiny dark glassy spheres typically formed by extraterrestrial impacts. The research is published in the latest issue of the journal Science.

Read the full story here.

Gearing up for the James Webb Space Telescope

poster2The James Webb Space Telescope (JWST) will be the premier observatory of the next decade, effectively the new “Hubble”, serving thousands of astronomers worldwide. A collaboration between NASA and the European Space Agency, the JWST has a 6.5-meter primary mirror and is scheduled for launch on an Ariane 5 rocket in October, 2018. It will have major impact on a wide range of fundamental science questions, ranging from the first luminous glows after the Big Bang, to the formation of solar systems and the sources of organic molecules and water that support the origin of life on planets like Earth.

Planning for observations with the JWST is already making great strides. Exploring the conditions and resources that lead to the origins of life is a research field in which members of RPI’s New York Center for Astrobiology have particular experience and expertise. Doug Whittet recently attended a workshop “Ice Age – The Era of the James Webb Space Telescope”, presenting an invited review on the current status and future directions of observations of interstellar ices. This workshop, hosted by the Lorentz Center at the University of Leiden in the Netherlands (October 4-7, 2016), was attended by 50 researchers specializing in this area of research. New teams were formed that will develop detailed observing programs aimed at elucidating the physical and chemical processes that provided the raw materials for life on our planet and other habitable worlds.


The Origin of Life: RNA World Deep Beneath the Surface

Where did life begin? In a shallow lagoon, or in a vent of superheated water spewing from the ocean floor? If we knew, we might know where to look for life elsewhere in the universe. The “RNA World” hypothesis, which suggests that ribonucleic acid (RNA) was the original prebiotic molecule, has traditionally looked to a shallow, sunlit pool of water. But researchers at Rensselaer Polytechnic Institute say other environments on early Earth could have supported the formation of RNA.

Read the full story here.

Historic Fossils Find New Life Telling the Story of Ancient Proteins

A few snippets of protein extracted from the fossil of an extinct species of giant beaver are opening a new door in paleoproteomics, the study of ancient proteins. Ancient proteins can be used to place animals on the evolutionary tree, and could offer insights into how life and Earth’s environment have evolved over time. Typically, paleoproteomics relies on fossils collected for the purpose. But in a paper published today in the Proceedings of the Royal Society B, researchers at Rensselaer Polytechnic Institute used a fossil collected more than 170 years ago in central New York, and housed at the New York State Museum.

Read the full story here.