New Annual Reviews on Cosmic Ices and Grain Alignment

The newly published 2015 volume of Annual Reviews of Astronomy & Astrophysics contains two review articles of great relevance to researchers interested in the astrochemistry and astrophysics of interstellar dust.

Observations of the icy universe by Adwin Boogert, Perry Gerakines and Doug Whittet
(link to e-print)
Abstract: Freeze-out of the gas-phase elements onto cold grains in dense interstellar and circumstellar media builds up ice mantles consisting of molecules that are mostly formed in situ (H2O, NH3, CO2, CO, CH3OH, and more). This review summarizes the detected infrared spectroscopic ice features and compares the abundances across Galactic, extragalactic, and Solar System environments. A tremendous amount of information is contained in the ice band profiles. Laboratory experiments play a critical role in the analysis of the observations. Strong evidence is found for distinct ice formation stages, separated by CO freeze-out at high densities. The ice bands have proven to be excellent probes of the thermal history of their environment. The evidence for the long-held idea that processing of ices by energetic photons and cosmic rays produces complex molecules is weak. Recent state-of-the-art observations show promise for much progress in this area with planned infrared facilities.

Interstellar Dust Grain Alignment by B-G Andersson, Alex Lazarian and John Vaillancourt
Abstract: Interstellar polarization at optical-to-infrared wavelengths is known to arise from asymmetric dust grains aligned with the magnetic field. This effect provides a potentially powerful probe of magnetic field structure and strength if the details of the grain alignment can be reliably understood. Theory and observations have recently converged on a quantitative, predictive description of interstellar grain alignment based on radiative processes. The development of a general, analytical model for this radiative alignment torque (RAT) theory has allowed specific, testable predictions for realistic interstellar conditions. We outline the theoretical and observational arguments in favor of RAT alignment, as well as reasons the “classical” paramagnetic alignment mechanism is unlikely to work, except possibly for the very smallest grains. With further detailed characterization of the RAT mechanism, grain alignment and polarimetry promise to not only better constrain the interstellar magnetic field but also provide new information on the dust characteristics.

Leave a Reply

Your email address will not be published. Required fields are marked *